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I. NOTATIONS

• Filter: h[n]. h[n] can be real-valued or complex-valued. h[n] is a N -tap filter. 0 6 n 6 N − 1.

• DTFT {h[n]} = H(ω). DFT {h[n]} = H(k).

• Real-valued signal: x[n]. The length of x[n] is L. DTFT {x[n]} = X(ω). DFT {x[n]} = X(k).

• Complex-valued signal: y[n]. The length of y[n] is L. DTFT {y[n]} = Y (ω). DFT {y[n]} = Y (k).

• Circular shift: y[((n−m))L] is a sequence that circularly shifts y[n] to the right by m units.

• Circular convolution:

z[n] = y[n]⊛ h[n] =

N−1
∑

m=0

y[n]h[((n−m))N ].

• We assume the input signals are one-dimensional. These signals are generic in a sense that their frequency

responses are non-zero at any frequency in the range from −π to π.

II. PRINCIPLES AND PROOFS

1. Convolving an even-length filter with an even-length filter gives rise to an odd-length filter; convolving an

even-length filter with an odd-length filter gives rise to an even-length filter; convolving an odd-length filter

with an odd-length filter gives rise to an odd-length filter.

Proof: The convolution of a N1-tap filter with the other N2-tap filter gives rise to a new filter of length

N1 + N2 − 1. When N1 and N2 are both even, N1 + N2 − 1 is odd. When N1 is even and N2 is odd,

N1 +N2 − 1 is even. When N1 and N2 are both odd, N1 +N2 − 1 is odd.

2. Convolving any integer number of odd-length filters gives rise to an odd-length filter.

Proof: Assume we have l N -tap filters for convolution, the output is a filter with the length of Nl− (l− 1) =

(N − 1)l − 1. Since N − 1 is even, (N − 1)l is also even. Therefore, (N − 1)l − 1 is odd.

3. Convolving any even number of even-length filters gives rise to an odd-length filter.

Proof: Assume we have l N -tap filters for convolution, the output is a filter with the length of Nl− (l− 1) =

(N − 1)l − 1. Since N − 1 is odd and l is even, (N − 1)l is also even. Therefore, (N − 1)l − 1 is odd.



LANTAO’S TUTORIAL ON IMAGE PROCESSING 2

4. Convolving any odd number of even-length filters gives rise to an even-length filter.

Proof: Assume we have l N -tap filters for convolution, the output is a filter with the length of Nl− (l− 1) =

(N − 1)l − 1. Since N − 1 is odd and l is odd, (N − 1)l is also odd. Therefore, (N − 1)l − 1 is even.

5. X(−ǫ) = X∗(ǫ) and X(π − ǫ) = X∗(π + ǫ).

Proof: Since

X(ǫ) =

N−1
∑

n=0

x[n]e−jnǫ,

we have

X(−ǫ) =

N−1
∑

n=0

x[n]ejnǫ

=

(

N−1
∑

n=0

x∗[n]e−jnǫ

)

∗

=

(

N−1
∑

n=0

x[n]e−jnǫ

)

∗

= X∗(ǫ).

We also have

X(π − ǫ) =

N−1
∑

n=0

x[n]e−jn(π−ǫ)

=

(

N−1
∑

n=0

x∗[n]ejn(π−ǫ)

)

∗

=

(

N−1
∑

n=0

x∗[n]ejn(−π−ǫ)

)

∗

=

(

N−1
∑

n=0

x∗[n]e−jn(π+ǫ)

)

∗

=

(

N−1
∑

n=0

x[n]e−jn(π+ǫ)

)

∗

= X∗(π + ǫ).

6. DTFT {h∗[n]} = H∗(−ω).

Proof:

Since

H(ω) =

N−1
∑

n=0

h[n]e−jnω,
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we have

DTFT {h∗[n]} =

N−1
∑

n=0

h∗[n]e−jnω

=

(

N−1
∑

n=0

h[n]ejnω

)

∗

=

(

H(−ω)

)

∗

= H∗(−ω).

7. DTFT {y[n−m]} = e−jmωY (ω).

Proof:

Since

Y (ω) =
N−1
∑

n=0

y[n]e−jnω,

we have

DTFT {y[n−m]} =
N−1
∑

n=0

y[n−m]e−jnω

=

N−1
∑

k=0

y[k]e−j(m+k)ω

=

(

N−1
∑

k=0

y[k]e−jkω

)

e−jmω

= e−jmωY (ω).

8. DFT {y[((n−m))L]} = e−j 2π

L
mkY (k).

Proof:

Since

DFT {y[n]} = Y (k) =

N−1
∑

n=0

y[n]e−j 2π

L
nk,

we have
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DFT {y[((n−m))L]} =
N−1
∑

n=0

y[((n−m))L]e
−j 2π

L
nk

=

m−1
∑

n=0

y[L−m+ n]e−j 2π

L
nk +

L−1
∑

n=m

y[n−m]e−j 2π

L
nk

=

m−1
∑

n=0

y[L−m+ n]e−j 2π

L
(n+L)k +

L−1
∑

n=m

y[n−m]e−j 2π

L
nk

=

L+m−1
∑

n=L

y[n−m]e−j 2π

L
nk +

L−1
∑

n=m

y[n−m]e−j 2π

L
nk

=

L+m−1
∑

n=m

y[n−m]e−j 2π

L
nk

=

L+m−1
∑

n=m

y[n−m]e−j 2π

L
(n−m)ke−j 2π

L
mk

= e−j 2π

L
mkY (k)

9. When h[n] = h∗[N − 1− n], for n = 0, . . . , N − 1, H∗(ω) = H(ω)ejω(N−1).

Proof:

Since

H(ω) =

N−1
∑

n=0

h[n]e−jnω,

we have

H∗(ω) =

N−1
∑

n=0

h∗[n]ejnω

=
N−1
∑

k=0

h∗[N − 1− k]ej(N−1−k)ω

=

N−1
∑

k=0

h[k]ej(N−1−k)ω

=

N−1
∑

k=0

h[k]e−jkωej(N−1)ω

= H(ω)ej(N−1)ω.

10. DFT {z[((n+N − 1))L]} = H∗(k)Y (k), when z[n] = y[n]⊛ h[n] and h[n] = h∗[N − 1− n].

Proof:

Since z[n] = y[n] ⊛ h[n], we have Z[k] = H[k]Y [k]. Since H∗(ω) = H(ω)ejω(N−1), we have H∗[k] =

H[k]ej
2π

N
(N−1). Therefore, H∗(k)Y (k) = ej

2π

N
(N−1)H[k]Y [k]. Since DFT {y[((n−m))L]} = e−j 2π

L
mkY (k),

we therefore have:

DFT {z[((n+N − 1))L]} = ej
2π

N
(N−1)Z[k]

= ej
2π

N
(N−1)H[k]Y [k]

= H∗(k)Y (k).
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11. The N -tap, real-valued filter h[n] has its DTFT with linear-phase response when N is even and h[n] =

h[N − 1− n], for 0 6 n 6 N − 1.

Proof:

H(ω) =

N−1
∑

n=0

h[n]e−jnω

=

N

2
−1
∑

n=0

h[n]e−jnω +

N−1
∑

n=N

2

h[n]e−jnω

=

N

2
−1
∑

n=0

h[n]e−jnω +

N

2
−1
∑

n=0

h[N − 1− n]e−j(N−1−n)ω

=

N

2
−1
∑

n=0

h[n]e−jnω +

N

2
−1
∑

n=0

h[N − 1− n]e−j(N−1)ωe−jnω

= e−j N−1

2
ω

N

2
−1
∑

n=0

h[n]

(

e−jnωej
N−1

2
ω + ejnωe−j N−1

2
ω

)

= e−j N−1

2
ω

N

2
−1
∑

n=0

2h[n] cos

[(

N − 1

2
− n

)

ω

]

= e−j N−1

2
ω

N

2
∑

n=1

2h

[

N

2
− n

]

cos

[(

n−
1

2

)

ω

]

= e−j N−1

2
ωHr(ω),

where

Hr(ω) =

N

2
∑

n=1

2h

[

N

2
− n

]

cos

[(

n−
1

2

)

ω

]

is real-valued. When ω covers the main lobe of the filter response, Hr(ω) will always be positive or negative

in the ranage of ω.


