Fundamental Principles of Digital Signal Processing

Lantao Yu, Student Member, IEEE

I. NOTATIONS

- Filter: h[n]. h[n] can be real-valued or complex-valued. h[n] is a N-tap filter. $0 \le n \le N-1$.
- DTFT $\{h[n]\} = H(\omega)$. DFT $\{h[n]\} = H(k)$.
- Real-valued signal: x[n]. The length of x[n] is L. DTFT $\{x[n]\} = X(\omega)$. DFT $\{x[n]\} = X(k)$.
- Complex-valued signal: y[n]. The length of y[n] is L. DTFT $\{y[n]\} = Y(\omega)$. DFT $\{y[n]\} = Y(k)$.
- Circular shift: $y[((n-m))_L]$ is a sequence that circularly shifts y[n] to the right by m units.
- Circular convolution:

$$z[n] = y[n] \circledast h[n] = \sum_{m=0}^{N-1} y[n]h[((n-m))_N].$$

• We assume the input signals are one-dimensional. These signals are generic in a sense that their frequency responses are non-zero at any frequency in the range from $-\pi$ to π .

II. PRINCIPLES AND PROOFS

1. Convolving an even-length filter with an even-length filter gives rise to an odd-length filter; convolving an even-length filter with an odd-length filter gives rise to an even-length filter; convolving an odd-length filter with an odd-length filter.

Proof: The convolution of a N_1 -tap filter with the other N_2 -tap filter gives rise to a new filter of length $N_1 + N_2 - 1$. When N_1 and N_2 are both even, $N_1 + N_2 - 1$ is odd. When N_1 is even and N_2 is odd, $N_1 + N_2 - 1$ is even. When N_1 and N_2 are both odd, $N_1 + N_2 - 1$ is odd.

- 2. Convolving any integer number of odd-length filters gives rise to an odd-length filter.
 Proof: Assume we have *l* N-tap filters for convolution, the output is a filter with the length of N*l* − (*l* − 1) = (N − 1)*l* − 1. Since N − 1 is even, (N − 1)*l* is also even. Therefore, (N − 1)*l* − 1 is odd.
- 3. Convolving any even number of even-length filters gives rise to an odd-length filter.
 Proof: Assume we have *l* N-tap filters for convolution, the output is a filter with the length of N*l* − (*l* − 1) = (N − 1)*l* − 1. Since N − 1 is odd and *l* is even, (N − 1)*l* is also even. Therefore, (N − 1)*l* − 1 is odd.

- 4. Convolving any odd number of even-length filters gives rise to an even-length filter. Proof: Assume we have l N-tap filters for convolution, the output is a filter with the length of Nl - (l - 1) = (N - 1)l - 1. Since N - 1 is odd and l is odd, (N - 1)l is also odd. Therefore, (N - 1)l - 1 is even.
- 5. $X(-\epsilon) = X^*(\epsilon)$ and $X(\pi \epsilon) = X^*(\pi + \epsilon)$.

Proof: Since

$$X(\epsilon) = \sum_{n=0}^{N-1} x[n]e^{-jn\epsilon},$$

we have

$$X(-\epsilon) = \sum_{n=0}^{N-1} x[n]e^{jn\epsilon}$$
$$= \left(\sum_{n=0}^{N-1} x^*[n]e^{-jn\epsilon}\right)^*$$
$$= \left(\sum_{n=0}^{N-1} x[n]e^{-jn\epsilon}\right)^*$$
$$= X^*(\epsilon).$$

We also have

$$X(\pi - \epsilon) = \sum_{n=0}^{N-1} x[n]e^{-jn(\pi - \epsilon)}$$
$$= \left(\sum_{n=0}^{N-1} x^*[n]e^{jn(\pi - \epsilon)}\right)^*$$
$$= \left(\sum_{n=0}^{N-1} x^*[n]e^{jn(-\pi - \epsilon)}\right)^*$$
$$= \left(\sum_{n=0}^{N-1} x^*[n]e^{-jn(\pi + \epsilon)}\right)^*$$
$$= \left(\sum_{n=0}^{N-1} x[n]e^{-jn(\pi + \epsilon)}\right)^*$$
$$= X^*(\pi + \epsilon).$$

6. DTFT $\{h^*[n]\} = H^*(-\omega)$.

Proof:

Since

$$H(\omega) = \sum_{n=0}^{N-1} h[n] e^{-jn\omega},$$

we have

DTFT
$$\{h^*[n]\} = \sum_{n=0}^{N-1} h^*[n]e^{-jn\omega}$$

= $\left(\sum_{n=0}^{N-1} h[n]e^{jn\omega}\right)^*$
= $\left(H(-\omega)\right)^*$
= $H^*(-\omega).$

7. DTFT $\{y[n-m]\} = e^{-jm\omega}Y(\omega)$.

Proof:

Since

$$Y(\omega) = \sum_{n=0}^{N-1} y[n] e^{-jn\omega},$$

we have

DTFT
$$\{y[n-m]\} = \sum_{n=0}^{N-1} y[n-m]e^{-jn\omega}$$

$$= \sum_{k=0}^{N-1} y[k]e^{-j(m+k)\omega}$$
$$= \left(\sum_{k=0}^{N-1} y[k]e^{-jk\omega}\right)e^{-jm\omega}$$
$$= e^{-jm\omega}Y(\omega).$$

8. DFT $\{y[((n-m))_L]\} = e^{-j\frac{2\pi}{L}mk}Y(k).$

Proof:

Since

DFT
$$\{y[n]\} = Y(k) = \sum_{n=0}^{N-1} y[n] e^{-j\frac{2\pi}{L}nk},$$

we have

$$\begin{aligned} \text{DFT} \left\{ y[((n-m))_L] \right\} &= \sum_{n=0}^{N-1} y[((n-m))_L] e^{-j\frac{2\pi}{L}nk} \\ &= \sum_{n=0}^{m-1} y[L-m+n] e^{-j\frac{2\pi}{L}nk} + \sum_{n=m}^{L-1} y[n-m] e^{-j\frac{2\pi}{L}nk} \\ &= \sum_{n=0}^{m-1} y[L-m+n] e^{-j\frac{2\pi}{L}(n+L)k} + \sum_{n=m}^{L-1} y[n-m] e^{-j\frac{2\pi}{L}nk} \\ &= \sum_{n=L}^{L+m-1} y[n-m] e^{-j\frac{2\pi}{L}nk} + \sum_{n=m}^{L-1} y[n-m] e^{-j\frac{2\pi}{L}nk} \\ &= \sum_{n=m}^{L+m-1} y[n-m] e^{-j\frac{2\pi}{L}nk} \\ &= \sum_{n=m}^{L+m-1} y[n-m] e^{-j\frac{2\pi}{L}nk} \\ &= \sum_{n=m}^{L+m-1} y[n-m] e^{-j\frac{2\pi}{L}nk} \\ &= e^{-j\frac{2\pi}{L}mk} Y(k) \end{aligned}$$

9. When $h[n] = h^*[N - 1 - n]$, for n = 0, ..., N - 1, $H^*(\omega) = H(\omega)e^{j\omega(N-1)}$.

Proof:

Since

$$H(\omega) = \sum_{n=0}^{N-1} h[n]e^{-jn\omega},$$

we have

$$H^{*}(\omega) = \sum_{n=0}^{N-1} h^{*}[n]e^{jn\omega}$$

= $\sum_{k=0}^{N-1} h^{*}[N-1-k]e^{j(N-1-k)\omega}$
= $\sum_{k=0}^{N-1} h[k]e^{j(N-1-k)\omega}$
= $\sum_{k=0}^{N-1} h[k]e^{-jk\omega}e^{j(N-1)\omega}$
= $H(\omega)e^{j(N-1)\omega}$.

10. DFT $\{z[((n + N - 1))_L]\} = H^*(k)Y(k)$, when $z[n] = y[n] \circledast h[n]$ and $h[n] = h^*[N - 1 - n]$. Proof:

Since $z[n] = y[n] \circledast h[n]$, we have Z[k] = H[k]Y[k]. Since $H^*(\omega) = H(\omega)e^{j\omega(N-1)}$, we have $H^*[k] = H[k]e^{j\frac{2\pi}{N}(N-1)}$. Therefore, $H^*(k)Y(k) = e^{j\frac{2\pi}{N}(N-1)}H[k]Y[k]$. Since DFT $\{y[((n-m))_L]\} = e^{-j\frac{2\pi}{L}mk}Y(k)$, we therefore have:

DFT
$$\{z[((n+N-1))_L]\} = e^{j\frac{2\pi}{N}(N-1)}Z[k]$$

= $e^{j\frac{2\pi}{N}(N-1)}H[k]Y[k]$
= $H^*(k)Y(k).$

11. The N-tap, real-valued filter h[n] has its DTFT with linear-phase response when N is even and h[n] = h[N-1-n], for $0 \le n \le N-1$. Proof:

$$\begin{split} H(\omega) &= \sum_{n=0}^{N-1} h[n] e^{-jn\omega} \\ &= \sum_{n=0}^{\frac{N}{2}-1} h[n] e^{-jn\omega} + \sum_{n=\frac{N}{2}}^{N-1} h[n] e^{-jn\omega} \\ &= \sum_{n=0}^{\frac{N}{2}-1} h[n] e^{-jn\omega} + \sum_{n=0}^{\frac{N}{2}-1} h[N-1-n] e^{-j(N-1-n)\omega} \\ &= \sum_{n=0}^{\frac{N}{2}-1} h[n] e^{-jn\omega} + \sum_{n=0}^{\frac{N}{2}-1} h[N-1-n] e^{-j(N-1)\omega} e^{-jn\omega} \\ &= e^{-j\frac{N-1}{2}\omega} \sum_{n=0}^{\frac{N}{2}-1} h[n] \left(e^{-jn\omega} e^{j\frac{N-1}{2}\omega} + e^{jn\omega} e^{-j\frac{N-1}{2}\omega} \right) \\ &= e^{-j\frac{N-1}{2}\omega} \sum_{n=0}^{\frac{N}{2}-1} 2h[n] \cos\left[\left(\frac{N-1}{2} - n \right) \omega \right] \\ &= e^{-j\frac{N-1}{2}\omega} \sum_{n=1}^{\frac{N}{2}} 2h \left[\frac{N}{2} - n \right] \cos\left[\left(n - \frac{1}{2} \right) \omega \right] \\ &= e^{-j\frac{N-1}{2}\omega} H_r(\omega), \end{split}$$

where

$$H_r(\omega) = \sum_{n=1}^{\frac{N}{2}} 2h \left[\frac{N}{2} - n\right] \cos\left[\left(n - \frac{1}{2}\right)\omega\right]$$

is real-valued. When ω covers the main lobe of the filter response, $H_r(\omega)$ will always be positive or negative in the ranage of ω .